Raven Protocol

가격

(raven)
참고: 이 플랫폼은 해당 통화의 거래 서비스를 지원하지 않습니다.
$0.00038053 -2.4%

      전체 계좌

      raven 실시간 가격 데이터

      raven 가격정보

      24시간 최저/고가

      24시간 최저 $0.0003797
      24시간 최고 $0.0004105

      역대 최고가

      US$0.00454777

      역대 최저가

      US$0.00006247

      7일 동안 최고가

      US$0.00047603

      7일 동안 최저가

      US$0.00034048

      raven 시장정보

      시가총액 순위

      3443

      잠재적 요소평가

      US$3796986

      총 공급량

      10,000,000,000

      최대 공급량

      시가총액 우위

      0%

      유통량/시가총액

      0.000

      에 대한 raven

      Raven Protocol's specific use case is to perform AI training where speed is the key. We're taking a 1M image dataset that takes 2-3 weeks to train on AWS down to 2-3 hours on Raven. AI companies will be able to train models better and faster. Raven Protocol is creating a self-sustaining and dynamic ecosystem for: Customers who want to train their AI engines; and/or Contributors who would like to share their compute resources in the form of Computers, Smartphones, or even a server rack. Raven Tokens (RAVEN) will work as the common ground to facilitate a secure transaction that will take place inside our ecosystem. Enterprise clients who want to rent compute power will do so with RAVEN and contributors of the compute power will be rewarded in RAVEN. Raven is creating a network of compute nodes that utilize idle compute power for the purposes of AI training where speed is the key. A native token is the key to bootstrapping a nascent network. We want to incentivize and reward people all over the world to contribute their compute power to our network. Additionally, we will reward token holders for running masternodes which will be responsible for orchestrating the training of various deep neural networks. Our consensus mechanism is something we call Proof-of-Calculation. Proof-of-Calculation will be the primary guideline for the regulation and distribution of incentives to the compute nodes in the network. Following are the two prime deciders for the incentive distribution: Speed: Depending upon how fast a node can perform gradient calculations (in a neural network) and return it back to the Gradient Collector. Redundancy: The 3 fastest redundant calculation will only qualify for receiving the incentive. This will make sure that the gradients that are getting returned are genuine and of the highest quality.

      인기

        데이터 없음

      가격 상승순위

        데이터 없음

      가격 하락 순위

        데이터 없음

      새로운 프로젝트

        데이터 없음

      © 2018-2024 XT.COM. 판권 소유. | 이용약관 | 개인 정보 보호 약관